S.I. UNITS

a four page issue

October 1999 revision of 1-1995

THE LEGAL MEASURING UNITS = S.I. UNITS

Science and industry will be required to supply all information on their products in units, defined in the international agreement named S.I. (Système International d'Unités). The S.I. is an expansion and rationalization of the metric system.

Since these data are used exclusively in education and science, in due course data given in older conventional units will become increasingly unintelligible to new generations of scientists and technologists who enter industry from school and universities.

The new units required by law will be stated in our data sheets as they are revised and reprinted but for an interim period the customary units will also be given in brackets.

The following is a brief review of S.I. units likely to be used in surface coating technology.

BASIS UNITS (have to be used)

Physical	Unit	Symbol
length	metre	m
mass	kilogram	kg
time	second	S
electric current	ampère	А
(thermodynamical) temperature	kelvin	K
quantity of matter	mol	mol

PREFIXES

Factor	Name	Symbol	Factor	Name	Symbol
10 ⁹	giga	G	10 ⁻¹ = 0,1	deci	d
$10^6 = 1.000.000$	mega	Μ	$10^{-2} = 0,01$	centi	С
$10^3 = 1.000$	kilo	k	$10^{-3} = 0,001$	milli	m
$10^2 = 100$	hecto	h	$10^{-6} = 0,000001$	micro	μ
10 ¹ = 10	deca	da	10 ⁻⁹	nano	n

INFORMATION

S.I. UNITS

1413

October 1999

DERIVED S.I. UNITS (have to be used)

Quantity	Name	Symbol
area	square metre	m²
volume, capacity	cubic metre	m ³
mass density	kilogram per cubic metre	kg.m ⁻³ (= $\frac{kg}{m^3}$)
molar concentration	mol per cubic metre	$mol.m^{-3} (= \frac{mol}{m^3})$
frequency	hertz	$s^{-1} (= \frac{1}{s}) = Hz$
force	newton	kg.m.s ⁻² (= $\frac{\text{kg.m}}{\text{s}^2}$) = N
pressure	pascal	$N.m^{-2} (= \frac{N}{m^2}) = Pa$
energy, work, quantity of heat	joule	N.m = J
power	watt	$J.s^{-1} (= \frac{J}{s}) = W$
electrical potential	volt	$W.A^{-1} (= \frac{W}{A}) = V$
electrical resistance	ohm	$V.A^{-1} (= \frac{V}{A}) = \Omega$
surface tension	newton per metre	$N.m^{-1} (= \frac{N}{m})$
specific heat	joule per kilogram kelvin	$J.kg^{-1}.K^{-1} (= \frac{J}{kg.K})$
thermal conductivity	watt per metre kelvin	$W.m^{-1} K^{-1} (= \frac{W}{m.K.})$
dynamic viscosity	pascal second	Pa.s

S.I. UNITS

October 1999

APPROVED NON S.I. UNITS (may be used)

Quantity	Name	Symbol	Value	
volume, capacity	litre	1	1 dm ³	$= 10^{-3} \text{m}^3 (= 0,001 \text{ m}^3)$
time	minute hour day	min h d	1 min 1 h 1 d	= 60 s = 3600 s = 86400 s
temperature	degree centigrade	°C	1°C	$= 1 \text{ K} (\text{but K} = ^{\circ}\text{C} + 273)$

CANCELLED UNITS (may not be used anymore)

Conversion in S.I. units of the units used up till now in the paint technology and cancelled per 1st October 1991.

		to multiply	
Quantity	Name	to divide	S.I. Units
length	micron, mu, µ	1	micrometre, µm
	inch, in, "	25,4 2,54	millimetre, mm centimetre, cm
	foot, ft, ′	30,48	centimetre, cm
	yard, yd	0,9144	metre, m
volume	CC	1	cubic centimetre, cm ³
	fluid ounce, fl oz	28,41	cubic centimetre, cm ³
	pint, pt	0,5683	litre, l
	gallon, UK gal	4,546	litre, l
	gallon, US gal	3,785	litre, l
Note: litre is not a	a S.I. unit, but remains approv	$ved = 10^{-3}m^3$	
	revolutions per		
frequency,	second	1	hertz, Hz, S ⁻¹
revolutions	rpm	0,01667	hertz, Hz, S ⁻¹
Note: per minute	, or min ⁻¹ is not a S.I. unit, bu	t remains approved	
mass	ounce, oz	28,35	gram, g
	pound, lb	0,4536	kilogram, kg
force	kilogramforce, kgf	9,80665	newton, N
	poundforce, lbf	4,44822	newton, N

S.I. UNITS

1413

October 1999

Quantity	Name	to multiply to divide	S.I. Units
pressure	kgf/cm², at		kilopascal, kPa
	mm Hg, (Torr)	0,133332	kilopascal, kPa
	mH ₂ 0 (mWK, MWS)	9,80665	kilopascal, kPa
	lbf/in² (psi, pound)	6,89476	kilopascal, kPa
	bar	100	kilopascal, kPa
quantity of heat	calorie, cal	4,1868	joule, J
	kilocalorie, kcal, Cal	4,1868	kilojoule, kJ
power	cal/s	4,1868	watt, W
	kcal/h	0,001163	kilowatt, kW
	m.kgf/s	9,80665	watt, W
	HP (PK, CV, PS)	0,735498	kilowatt, kW
	horsepower, hp	0,7457	kilowatt, kW
temperature	degree Fahrenheit, °F	5/9	degree centigrade, °C
dynamic viscosity	poise	0,1	pascalsecond, Pa.s
kinematic viscosity	stokes	0,0001	m ² .S ⁻¹

Limitation of Liability - The information in this data sheet is based upon laboratory tests we believe to be accurate and is intended for guidance only. All recommendations or suggestions relating to the use of the products made by Sigma Coatings, whether in technical documentation, or in response to a specific enquiry, or otherwise, are based on data which to the best of our knowledge are reliable. The products and information are designed for users having the requisite knowledge and industrial skills and it is the end-user's responsibility to determine the suitability of the product for its intended use.

Sigma Coatings has no control over either the quality or condition of the substrate, or the many factors affecting the use and application of the product. Sigma Coatings does therefore not accept any liability arising from loss, injury or damage resulting from such use or the contents of this data sheet (unless there are written agreements stating otherwise).

The data contained herein are liable to modification as a result of practical experience and continuous product development. This data sheet replaces and annuls all previous issues and it is therefore the user's responsibility to ensure that this sheet is current prior to using the product.

